美团技术拷问:LinkedList 源码看过吗?
作者缄默沉静王二泉源公众号缄默沉静王二
一、LinkedList 的剖白
各人好,我是 LinkedList,和 ArrayList 是同门师兄弟,但我俩练的内功却完全不同。师兄练的是动态数组,我练的是链表。
问各人一个题目,知道我为什么要练链表这门内功吗?
举个例子来讲吧,假如你们手头要管理一推票据,大概有一张,也大概有一亿张。
该怎么办呢?
申请一个 10G 的大数组等着?那万一票据只有 100 张呢?
申请一个默认巨细的数组,随着数据量的增大扩容?要知道扩容是必要重新复制数组的,很耗时间。
关键是,数组还有一个毛病就是,假如现在有 500 万张票据,现在要从中间删除一个票据,就必要把 250 万张票据往前移动一格。
遇到这种情况的时候,我师兄几乎感情崩溃,难受的要命。师父不忍心看到师兄这样痛楚,于是打我进入师门那一天,就强迫我练链表这门内功,一开始我很不理解,畏惧师父偏爱,不把师门最厉害的内功教我。
直到有一天,我亲眼目睹师兄差点因为移动数据而走火入魔,我才明白师父的良苦用心。从此以后,我苦练“链表”这门内功,取得了显著的进步,师父和师兄都夸我有天赋。
链表这门内功大致分为三个条理:
[*]第一层叫做“单向链表”,我只有一个后指针,指向下一个数据;
[*]第二层叫做“双向链表”,我有两个指针,后指针指向下一个数据,前指针指向上一个数据。
[*]第三层叫做“二叉树”,把后指针去掉,换成左右指针。
但我现在的功力还达不到第三层,不外师父说我有这个潜力,练成神功是早晚的事。
二、LinkedList 的内功心法
好了,经过我这么样的一个剖白后,各人对我应该已经不陌生了。那么接下来,我给各人展示一下我的内功心法。
我的内功心法紧张是一个私有的静态内部类,叫 Node,也就是节点。
private static class Node { E item; Node next; Node prev; Node(Node prev, E element, Node next) { this.item = element; this.next = next; this.prev = prev; }}它由三部分组成:
[*]节点上的元素
[*]下一个节点
[*]上一个节点
我画幅图给你们展示下吧。
https://p3.toutiaoimg.com/large/pgc-image/14334aff0ae341d3a79b59ce4a75051e
[*]对于第一个节点来说,prev 为 null;
[*]对于最后一个节点来说,next 为 null;
[*]别的的节点呢,prev 指向前一个,next 指向后一个。
我的内功心法就这么简单,着实我早已经牢记在心了。但师父叮嘱我,每天早上醒来的时候,每天晚上睡觉的时候,一定要默默地背诵一遍。虽然我有些厌烦,但我对师父的教导从来都是百依百顺。
03、LinkedList 的招式
和师兄 ArrayList 一样,我的招式也无外乎“增编削查”这 4 种。在此之前,我们都必须得初始化。
LinkedList list = new LinkedList();师兄在初始化的时候,默认巨细为 10,也可以指定巨细,依据要存储的元素数量来。我就不必要。
1)招式一:增
可以调用 add 方法添加元素:
list.add("缄默沉静王二");list.add("缄默沉静王三");list.add("缄默沉静王四");add 方法内部着实调用的是 linkLast 方法:
public boolean add(E e) { linkLast(e); return true;}linkLast,顾名思义,就是在链表的尾部链接:
void linkLast(E e) { final Node l = last; final Node newNode = new Node(l, e, null); last = newNode; if (l == null) first = newNode; else l.next = newNode; size++; modCount++;}
[*]添加第一个元素的时候,first 和 last 都为 null。
[*]然后新建一个节点 newNode,它的 prev 和 next 也为 null。
[*]然后把 last 和 first 都赋值为 newNode。
此时还不能称之为链表,因为前后节点都是断裂的。
https://p26.toutiaoimg.com/large/pgc-image/9556d97f04464607b0e0ac2eaa7dc81a
[*]添加第二个元素的时候,first 和 last 都指向的是第一个节点。
[*]然后新建一个节点 newNode,它的 prev 指向的是第一个节点,next 为 null。
[*]然后把第一个节点的 next 赋值为 newNode。
此时的链表还不完整。
https://p3.toutiaoimg.com/large/pgc-image/0b61be4eaf1941019c773363738645c9
[*]添加第三个元素的时候,first 指向的是第一个节点,last 指向的是最后一个节点。
[*]然后新建一个节点 newNode,它的 prev 指向的是第二个节点,next 为 null。
[*]然后把第二个节点的 next 赋值为 newNode。
此时的链表已经完整了。
https://p3.toutiaoimg.com/large/pgc-image/53eb8c35a690475bbd7d10da29a2f440
我这个增的招式,还可以演化成另外两个:
[*]addFirst() 方法将元素添加到第一位;
[*]addLast() 方法将元素添加到末尾。
addFirst 内部着实调用的是 linkFirst:
public void addFirst(E e) { linkFirst(e);}linkFirst 负责把新的节点设为 first,并将新的 first 的 next 更新为之前的 first。
private void linkFirst(E e) { final Node f = first; final Node newNode = new Node(null, e, f); first = newNode; if (f == null) last = newNode; else f.prev = newNode; size++; modCount++;}addLast 的内核着实和 addFirst 差不多,就交给各人自行理解了。
2)招式二:删
我这个删的招式还挺多的:
[*]remove():删除第一个节点
[*]remove(int):删除指定位置的节点
[*]remove(Object):删除指定元素的节点
[*]removeFirst():删除第一个节点
[*]removeLast():删除最后一个节点
remove 内部调用的是 removeFirst,以是这两个招式的功效一样。
remove(int) 内部着实调用的是 unlink 方法。
public E remove(int index) { checkElementIndex(index); return unlink(node(index));}unlink 方法着实很好理解,就是更新当前节点的 next 和 prev,然后把当前节点上的元素设为 null。
E unlink(Node x) { // assert x != null; final E element = x.item; final Node next = x.next; final Node prev = x.prev; if (prev == null) { first = next; } else { prev.next = next; x.prev = null; } if (next == null) { last = prev; } else { next.prev = prev; x.next = null; } x.item = null; size--; modCount++; return element;}remove(Object) 内部也调用了 unlink 方法,只不外在此之前要先找到元素所在的节点:
public boolean remove(Object o) { if (o == null) { for (Node x = first; x != null; x = x.next) { if (x.item == null) { unlink(x); return true; } } } else { for (Node x = first; x != null; x = x.next) { if (o.equals(x.item)) { unlink(x); return true; } } } return false;}这内部就分为两种,一种是元素为 null 的时候,必须使用 == 来判定;一种是元素为非 null 的时候,要使用 equals 来判定。equals 是不能用来判 null 的,会抛出 NPE 错误。
removeFirst 内部调用的是 unlinkFirst 方法:
public E removeFirst() { final Node f = first; if (f == null) throw new NoSuchElementException(); return unlinkFirst(f);}unlinkFirst 负责的就是把第一个节点毁尸灭迹,而且捎带把后一个节点的 prev 设为 null。
private E unlinkFirst(Node f) { // assert f == first && f != null; final E element = f.item; final Node next = f.next; f.item = null; f.next = null; // help GC first = next; if (next == null) last = null; else next.prev = null; size--; modCount++; return element;}3)招式三:改
可以调用 set() 方法来更新元素:
list.set(0, "缄默沉静王五");来看一下 set() 方法:
public E set(int index, E element) { checkElementIndex(index); Node x = node(index); E oldVal = x.item; x.item = element; return oldVal;}首先对指定的下标进行检查,看是否越界;然后根据下标查找原有的节点:
Node node(int index) { // assert isElementIndex(index); if (index < (size >> 1)) { Node x = first; for (int i = 0; i < index; i++) x = x.next; return x; } else { Node x = last; for (int i = size - 1; i > index; i--) x = x.prev; return x; }}size >> 1:也就是右移一位,相称于除以 2。对于计算机来说,移位比除法运算服从更高,因为数据在计算机内部都是二进制存储的。
换句话说,node 方法会对下标进行一个初步判定,如果靠近前半截,就从下标 0 开始遍历;如果靠近后半截,就从末尾开始遍历。
找到指定下标的节点就简单了,直接把原有节点的元素替换成新的节点就 OK 了,prev 和 next 都不用改动。
4)招式四:查
我这个查的招式可以分为两种:
[*]indexOf(Object):查找某个元素所在的位置
[*]get(int):查找某个位置上的元素
indexOf 的内部分为两种,一种是元素为 null 的时候,必须使用 == 来判定;一种是元素为非 null 的时候,要使用 equals 来判定。因为 equals 是不能用来判 null 的,会抛出 NPE 错误。
public int indexOf(Object o) { int index = 0; if (o == null) { for (Node x = first; x != null; x = x.next) { if (x.item == null) return index; index++; } } else { for (Node x = first; x != null; x = x.next) { if (o.equals(x.item)) return index; index++; } } return -1;}get 方法的内核着实照旧 node 方法,这个之前已经说明过了,这里略过。
public E get(int index) { checkElementIndex(index); return node(index).item;}着实,查这个招式还可以演化为其他的一些,比如说:
[*]getFirst() 方法用于获取第一个元素;
[*]getLast() 方法用于获取最后一个元素;
[*]poll() 和 pollFirst() 方法用于删除并返回第一个元素(两个方法尽管名字不同,但方法体是完全相同的);
[*]pollLast() 方法用于删除并返回最后一个元素;
[*]peekFirst() 方法用于返回但不删除第一个元素。
四、LinkedList 的挑战
说句着实话,我不是很喜欢和师兄 ArrayList 拿来比力,因为我们各自修炼的内功不同,没有孰高孰低。
虽然师兄经常喊我一声师弟,但我们之间着实挺和谐的。但我知道,在外人眼里,同门师兄弟,总要一较高下的。
比如说,我们俩在增编削查时候的时间复杂度。
也许这就是命运吧,从我进入师门的那天起,这种争论就不绝没有停息过。
无论外人怎么看待我们,在我眼里,师兄永久都是一哥,我敬重他,他也乐意掩护我。
页:
[1]